

Welcome to Spyci’s documentation!

Contents:

	Spyci
	Getting Started

	Installation

	Installation
	Stable release

	From sources

	Usage

	spyci
	spyci package

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Deploying

	Credits
	Development Lead

	Contributors

	History
	0.6.2 (2020-06-02)

Indices and tables

	Index

	Module Index

	Search Page

Spyci

A tiny Python package to parse and plot spice raw data files.

[image: _images/spyci.svg]
 [https://pypi.python.org/pypi/spyci][image: _images/spyci1.svg]
 [https://travis-ci.com/gmagno/spyci][image: Documentation Status]
 [https://spyci.readthedocs.io/en/latest/?badge=latest]
	Free software: MIT license

	Documentation: https://spyci.readthedocs.io.

Getting Started

These instructions will get you a copy of the package up and running on your local machine.

Note: at the moment only ascii raw spice format is supported!

Installation

From PyPI

$ pip install spyci # it is recommended to this in a virtual environment

From the github repo

$ pip install git+https://github.com/gmagno/spyci.git

or

$ git clone git@github.com:gmagno/spyci.git
$ cd spyci/
$ python setup.py install

Usage

From python run:

>>> from spyci import spyci
>>> data = spyci.load_raw("/path/to/rawspice.raw") # see 'Data structure' section below

Or just use the CLI:

$ spyci -r /path/to/rawspice.raw vin vout

for more details use:

$ spyci -h
usage: spyci [-h] [-v] [-r RAW_FILE] [-l] [-f] [-o OUT_IMAGE] ...

Spyci (spyci v0.6.1) -- parses ngspice raw data files and
plots the specified variables.
For full documentation check the repo: https://github.com/gmagno/spyci

positional arguments:
 VARS List of variables to plot

optional arguments:
 -h, --help show this help message and exit
 -v, --version shows spyci version
 -r RAW_FILE, --raw-file RAW_FILE
 path to raw file to be parsed
 -l, --list-variables lists variables that can be plotted
 -f, --out-formats lists supported output image formats
 -o OUT_IMAGE, --out-image OUT_IMAGE
 path to output image file, use -f, to list supported
 formats

 /##
 |__/
 /####### /###### /## /## /####### /##
 /##_____/ /##__ ##| ## | ## /##_____/| ##
 | ###### | ## \ ##| ## | ##| ## | ##
 ____ ##| ## | ##| ## | ##| ## | ##
 /#######/| #######/| #######| #######| ##
 |_______/ | ##____/ ____ ## _______/|__/
 | ## /## | ##
 | ## | ######/
 |__/ ______/

return:
 The return value of spyci is 0 if the raw file is successfully
 parsed and plotted.

examples:
 # Run without arguments will attempt to load rawspice.raw from cwd
 # and plot all variables
 $ spyci

 # List variables that can be plotted
 $ spyci -l
 Variables:

 idx name type
 ----- ---------- -------
 1 i(l1) current
 2 n1 voltage
 3 vi voltage
 4 vo voltage
 5 i(vsource) current

 # Load 'some/location/sim.raw' and plot variables 'i(l1)' and 'vo'
 $ spyci -r some/location/sim.raw "i(l1)" vo

 # Indices can be used insted of variable names, this is equivalent
 # to the previous example
 $ spyci -r some/location/sim.raw 1 4

 # Save your plot to the file system
 $ spyci -o myplot.png 1 4

 # Different image formats are supported, just use the correct
 # extension, {.png, .svg, .pdf, ...}. For a list of supported
 # formats run with -f flag
 $ spyci -f
 Supported output image file formats:

 ext format
 ----- -------------------------
 raw Raw RGBA bitmap
 rgba Raw RGBA bitmap
 pgf PGF code for LaTeX
 svgz Scalable Vector Graphics
 svg Scalable Vector Graphics
 ps Postscript
 png Portable Network Graphics
 eps Encapsulated Postscript
 pdf Portable Document Format

copyright:
 Copyright © 2020 Gonçalo Magno <goncalo@gmagno.dev>
 This software is licensed under the MIT License.

Data structure

A properly parsed raw spice file by load_raw() returns a dictionary with the following structure:

{
 "title": <str>,
 "date:": <str>,
 "plotname:": <str>,
 "flags:": <str>,
 "no_vars:": <str>,
 "no_points:": <str>,
 "vars": [
 { "idx": <int>, "name": <str>, "type": <str> },
 { "idx": <int>, "name": <str>, "type": <str> }
 ...
 { "idx": <int>, "name": <str>, "type": <str> }
]
 "values": {
 "var1": <numpy.ndarray>,
 "var2": <numpy.ndarray>,
 ...
 "varN": <numpy.ndarray>
 }
}

Where values values is a numpy structured array with the actual data.

Examples

The following examples make use of ngspice to run the spice simulations, so please ensure it is installed.
On ubuntu that would be:

$ sudo apt install ngspice

Inverting amplifier with an opamp LM741

Check the directory examples/amplifier/ for details on the cirtcuit and the simulation files.

The schematic:

[image: amplifier]

Run the simulation with:

$ cd examples/amplifier
$ ngspice -r rawspice.raw -o output.log main.cir
$ spyci vout vin

which will fire ngspice generating output.log and rawspice.raw files and also plots the voltages vin and vout.

[image: amplifier]

Second order low pass filter with an opamp LM741

Check the directory examples/lp_filter/ for details on the cirtcuit and the simulation files.

The schematic:

[image: lp_filter]

Run the simulation with:

$ cd examples/lp_filter
$ ngspice -r rawspice.raw -o output.log main.cir
$ spyci vout vin

which will fire ngspice generating output.log and rawspice.raw files and also plots the gain vout/vin in dB.

[image: lp_filter]

License

This project is licensed under the MIT License - see the LICENSE [https://github.com/gmagno/spyci/blob/master/LICENSE] file for details

Installation

Stable release

To install Spyci, run this command in your terminal:

$ pip install spyci

This is the preferred method to install Spyci, as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

From sources

The sources for Spyci can be downloaded from the Github repo [https://github.com/gmagno/spyci].

You can either clone the public repository:

$ git clone git://github.com/gmagno/spyci

Or download the tarball [https://github.com/gmagno/spyci/tarball/master]:

$ curl -OJL https://github.com/gmagno/spyci/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

Usage

To use Spyci in a project:

import spyci

spyci

	spyci package
	Submodules

	spyci.cli module

	spyci.spyci module

	Module contents

spyci package

Submodules

spyci.cli module

spyci.spyci module

Module contents

Top-level package for Spice Raw Parser.

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit
helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/gmagno/spyci/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help
wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

Spyci could always use more documentation, whether as part of the
official Spyci docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/gmagno/spyci/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up spyci for local development.

	Fork the spyci repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/spyci.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv spyci
$ cd spyci/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the
tests, including testing other Python versions with tox:

$ flake8 spyci tests
$ python setup.py test or pytest
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 3.5, 3.6, 3.7 and 3.8, and for PyPy. Check
https://travis-ci.com/gmagno/spyci/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ pytest tests.test_spyci

Deploying

A reminder for the maintainers on how to deploy.
Make sure all your changes are committed (including an entry in HISTORY.rst).
Then run:

$ bump2version patch # possible: major / minor / patch
$ git push
$ git push --tags

Travis will then deploy to PyPI if tests pass.

Credits

Development Lead

	Gonçalo Magno <goncalo@gmagno.dev>

Contributors

None yet. Why not be the first?

History

0.6.2 (2020-06-02)

	Fix project.

 Python Module Index

 s

 		 	

 		
 s	

 	
 	
 spyci	

Index

 S

S

 	
 	spyci (module)

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Welcome to Spyci’s documentation!

 		
 Spyci

 		
 Getting Started

 		
 Installation

 		
 From PyPI

 		
 From the github repo

 		
 Usage

 		
 Data structure

 		
 Examples

 		
 Inverting amplifier with an opamp LM741

 		
 Second order low pass filter with an opamp LM741

 		
 License

 		
 Installation

 		
 Stable release

 		
 From sources

 		
 Usage

 		
 spyci

 		
 spyci package

 		
 Submodules

 		
 spyci.cli module

 		
 spyci.spyci module

 		
 Module contents

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Tips

 		
 Deploying

 		
 Credits

 		
 Development Lead

 		
 Contributors

 		
 History

 		
 0.6.2 (2020-06-02)

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

